11 research outputs found

    Analysis of the main passive soft tissues associated with adult acquired flatfoot deformity development: A computational modeling approach

    Get PDF
    Adult acquired flatfoot deformity (AAFD) is a pathology with a wide range of treatment options. Physicians decide the best treatment based on their experience, so the process is entirely subjective. A better understanding of soft tissue stress and its contribution in supporting the plantar arch could help to guide the clinical decision. Traditional experimental trials cannot consistently evaluate the contribution of each tissue. Therefore, in this research a 3-Dimensional FE foot model was reconstructed from a normal patient in order to measure the stress of the passive stabilizers of the arch, and its variation in different scenarios related with intermediate stages of AAFD development. All bones, the plantar fascia (PF), cartilages, plantar ligaments and the spring ligament (SL) were included, respecting their anatomical distribution and biomechanical characteristics. An AAFD evaluation scenario was simulated. The relative contribution of each tissue was obtained comparing each result with a normal case. The results show that PF is the main tissue that prevents the arch elongation, while SL mainly reduces the foot pronation. Long and short plantar ligaments play a secondary role in this process. The stress increment on both PF and SL when one of two fails suggests that these tissues complement each other. These findings support the theory that regards the tibialis posterior tendon as a secondary actor in the arch maintenance, compared with the PF and the SL, because this tendon is overstretched by the hindfoot pronation around the talonavicular joint. This approach could help to improve the understanding of AAFD

    Efecto de la osteotomía medializante de calcáneo sobre tejidos blandos de soporte del arco plantar: un estudio computacional

    Get PDF
    Medializing calcaneal osteotomy forms part of the treatment options for adult acquired flat foot. The structural correction that is achieved is widely known. However, the effect of this procedure on the soft tissues that support the plantar arch has been little studied, since it is not possible to quantify experimentally the tension and deformation variations generated. Therefore, the objective of this study was to evaluate the effect of medializing calcaneal osteotomy on the soft tissue that supports the plantar arch, using a computational model of the human foot designed with a clinical approach. The proposed finite element model was reconstructed from computerized tomography images of a healthy patient. All the bones of the foot, the plantar fascia, cartilages, plantar ligaments and the calcaneus-navicular ligament were included, respecting their anatomical distribution and biomechanical properties. Simulations were performed emulating the monopodal support phase of the human walk of an adult. The effect on each tissue was evaluated according to clinical and biomechanical criteria. The results show that calcaneal osteotomy reduces the tension normally generated on the evaluated tissues, with the effect on the calcaneus-navicular ligament and the plantar fascia being the most notable. The deformation results obtained are consistent with experimental tests and clinical knowledge. The versatility of this model allows the objective assessment of different conditions and supports decision making for the treatment of adult acquired flat foot in middle and advanced stages

    Epidemiological trends of HIV/HCV coinfection in Spain, 2015-2019

    Get PDF
    Altres ajuts: Spanish AIDS Research Network; European Funding for Regional Development (FEDER).Objectives: We assessed the prevalence of anti-hepatitis C virus (HCV) antibodies and active HCV infection (HCV-RNA-positive) in people living with HIV (PLWH) in Spain in 2019 and compared the results with those of four similar studies performed during 2015-2018. Methods: The study was performed in 41 centres. Sample size was estimated for an accuracy of 1%. Patients were selected by random sampling with proportional allocation. Results: The reference population comprised 41 973 PLWH, and the sample size was 1325. HCV serostatus was known in 1316 PLWH (99.3%), of whom 376 (28.6%) were HCV antibody (Ab)-positive (78.7% were prior injection drug users); 29 were HCV-RNA-positive (2.2%). Of the 29 HCV-RNA-positive PLWH, infection was chronic in 24, it was acute/recent in one, and it was of unknown duration in four. Cirrhosis was present in 71 (5.4%) PLWH overall, three (10.3%) HCV-RNA-positive patients and 68 (23.4%) of those who cleared HCV after anti-HCV therapy (p = 0.04). The prevalence of anti-HCV antibodies decreased steadily from 37.7% in 2015 to 28.6% in 2019 (p < 0.001); the prevalence of active HCV infection decreased from 22.1% in 2015 to 2.2% in 2019 (p < 0.001). Uptake of anti-HCV treatment increased from 53.9% in 2015 to 95.0% in 2019 (p < 0.001). Conclusions: In Spain, the prevalence of active HCV infection among PLWH at the end of 2019 was 2.2%, i.e. 90.0% lower than in 2015. Increased exposure to DAAs was probably the main reason for this sharp reduction. Despite the high coverage of treatment with direct-acting antiviral agents, HCV-related cirrhosis remains significant in this population

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Preparation and Characterization of an Injectable and Photo-Responsive Chitosan Methacrylate/Graphene Oxide Hydrogel: Potential Applications in Bone Tissue Adhesion and Repair

    No full text
    As life expectancy continues to increase, the inevitable weakening and rupture of bone tissue have grown as concerns in the medical community, thus leading to the need for adhesive materials suitable for bone repair applications. However, current commercially available adhesives face certain drawbacks that prevent proper tissue repair, such as low biocompatibility, poor adhesion to wet surfaces, and the need for high polymerization temperatures. This work aims to develop an injectable and photo-responsive chitosan methacrylate/graphene oxide (ChiMA/GO) adhesive nanocomposite hydrogel of high biocompatibility that is easy to apply by simple extrusion and that offers the possibility for in situ polymer and physiological temperatures. The nanocomposite was thoroughly characterized spectroscopically, microscopically, rheologically, thermally, and through mechanical, textural, and biological assays to fully evaluate its correct synthesis and functionalization and its performance under physiological conditions that mimic those observed in vivo. In addition, a finite element analysis (FEA) simulation was used to evaluate its performance in femur fractures. Results suggest the material’s potential as a bioadhesive, as it can polymerize at room temperature, shows superior stability in physiological media, and is capable of withstanding loads from body weight and movement. Moreover, the material showed remarkable biocompatibility as evidenced by low hemolytic and intermediate platelet aggregation tendencies, and high cytocompatibility when in contact with osteoblasts. The comprehensive studies presented here strongly suggest that the developed hydrogels are promising alternatives to conventional bone adhesives that might be further tested in vivo in the near future

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    International audienceIn 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore